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ABSTRACT

Maize yield improvement has been strongly linked to improvements in stress tolerance, particularly to
increased interplant competition. As a result, modern hybrids are able to produce kernels at high plant
population densities. Identification of the genetic factors responsible for density response in maize
requires direct testing of interactions between genetic effects and density and evaluation of that response
in multiple traits. In this article we take a broad view of the problem and use a general approach based
upon mixed models to analyze data from eight segmental inbred lines in a B73 background and their
crosses to the unrelated parent Mo17 (hybrids). We directly test for the interaction between treatment
effects and genetic effects instead of the commonly used overlaying of results on a common map.
Additionally, we demonstrate one way to handle heteroscedasticity of variances common in stress re-
sponses. We find that some SILs are consistently different from the recurrent parent regardless of the
density, while others differ from the recurrent parent in one density level but not in the other. Thus, we
find positive evidence for both main effects and interaction between genetic loci and density in cases
where the approach of overlapping results fails to find significant results. Furthermore, our study clearly
identifies segments that respond differently to density depending upon the inbreeding level (inbred/
hybrid).

MAIZE (Zea mays L.) is one of the world’s oldest
domesticated crops and has been the source of

nutrition for humans for thousands of years. It has
played a significant role in human culture from the
earliest human civilizations (Smith 1995). Maize selec-
tion has occurred in the context of food and feed
production systems from the earliest days. The advent
of modern hybrid maize and modern breeding meth-
ods have made possible tremendous gains in grain yield
compared to that of older open-pollinated varieties of
maize. Concurrently, research on yield potential and
stress resistance in maize, combined with extensive phe-
notypic selection, has allowed for significant genetic
gains in rain-fed yield of maize hybrids (Derieux et al.
1987; Russell 1991; Tollenaar 1991; Duvick 1992;
Eyherabide et al. 1994; Sangoi et al. 2002). Genetic
variation for yield potential in elite maize populations
appears to be controlled by many genetic factors, each
with relatively small effects (Schön et al. 2004). There-
fore, the utility of QTL mapping and marker-assisted
selection approaches for yield potential in maize is
questionable (Holland 2004). However, it should be
possible to dissect maize responses to specific biotic and

abiotic stresses into less complex component traits.
These component traits may be controlled by smaller
sets of genes, making them more amenable to QTL
mapping and marker-assisted selection (Ribaut et al.
2001; Tuberosa and Salvi 2004). This makes stress
resistance traits such as tolerance to interplant compe-
tition, pests, and drought, along with enhancement of
yield stability across environments and production sys-
tems, a primary objective for plant breeders.

An additional complication arises in hybrid maize
because it displays heterosis for many traits and the
physiological response to stress may differ between in-
bred lines and hybrids. Since maize breeding programs
focus on improvement of hybrids, but accomplish this
initially through the selection among inbred lines, com-
parisons of responses observed in inbred and hybrid
maize are of critical importance. First, such compar-
isons will give insight into the gene action affecting
stress response mechanisms. Second, such comparisons
will guide appropriate breeding strategies for improving
hybrid maize, by determining the relative efficiencies of
screening inbreds per se vs. hybrids created by crossing
experimental inbreds to a common but unrelated tester
line. Therefore, studies of plant response to stress in
the context of inbred/hybrid status are important for
understanding the genetic basis of the physiological
response.
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Concurrent with understanding the interplay be-
tween inbred/hybrid responses to stress, one of the
more pressing problems is understanding the physio-
logical mechanisms responsible for the response to
stress at the whole-plant level (i.e., the vegetative as well
as reproductive responses to stress levels and how these
traits are related to grain yield). We are interested in
understanding how stress levels affect multiple aspects
of the plant response and how those responses are
related to each other. By identifying the relationships
among treatment responses for vegetative and repro-
ductive parameters and their relationships with grain
yield, we hope to understand the physiological mecha-
nisms that underlie the responses, and, at the same
time, the genetic basis of such responses. Multitrait
methods for identifying QTL have been developed for
a variety of mating designs and statistical approaches
( Jiang and Zeng 1995; Korol et al. 1995; Knott and
Haley 2000; Gilbert and Le Roy 2003; Lund et al.
2003; Sorensen et al. 2003). In all cases, multivariate
approaches have been shown to improve the precision
of the QTL effects and location estimates. This advantage
has now been extended to scenarios with nonnormal
traits (Lange and Whittaker 2001) or a combination
of qualitative and quantitative traits (Corander and
Sillanpaa 2002). Methods for adding fixed treatment
factors of interest during QTL modeling have been
recently developed. For instance, Ma et al. (2002) pro-
vided a theoretical framework for QTL mapping of
longitudinal data, and Zhao et al. (2004) extended it by
adding sex effects.

Previous studies have tried to map QTL for grain yield
under certain stresses, often by comparing positions of
grain yield QTL with those of QTL for component traits
known to play a role in stress tolerances. From such
studies we have learned much about plant response to
nitrogen deficiency (Bertin and Gallais 2001; Hirel

et al. 2001), water deficiency (Landi et al. 1995; Ribaut

et al. 1996; Tuberosaet al. 1998, 2002b; Sanguineti et al.
1999; Sari-Gorla et al. 1999; Li et al. 2003), low phos-
phorus (Reiter et al. 1991), and cold temperature
growing conditions (Hund et al. 2004). The question
is often approached indirectly, by mapping the trait of
interest (i.e., yield) under two or more conditions and
overlaying the resulting scans on the common map, to
identify shared and distinct QTL. The QTL identified
under one condition but not under the other are then
inferred to be responsible for the plant response to the
stress. However, such an indirect identification of QTL
positions for response to stress is unsatisfactory as there
is no statistical assessment of the interaction between
QTL and stress level.

The ability to simultaneously examine the response
to stress in inbreds and hybrids on several traits and
discover how the stress directly affects the relationship
among traits would improve the genetic analysis of stress
response (Phillips et al. 2001). Mixed-effects linear

models are a natural approach for developing flexible
methods to identify QTL in complex situations. One
advantage of mixed-effects models is that they can ac-
commodate heterogeneity in the error variances across
stress levels, and the variances are used to directly test
QTL-by-treatment interactions. In addition, mixed mod-
els with heterogeneous error variances can be extended
to multivariate situations using a repeated measures
approach. Other sources of variation, either fixed or
random, can also be included in the model and tested
directly. Multilevel models and the response to multiple-
factor stresses in maize can also be explored (Vyn and
Hooker 2002). While maximum-likelihood methods
are more computationally intensive than least squares
(Seaton et al., 2002), the implementation of new, more
efficient algorithms (Gilmour et al. 1999; Perez-Enciso

and Misztal 2004) along with the increase in comput-
ing power makes the implementation of mixed-effects
models a reasonable approach for many QTL analyses.

We used the mixed-effect model framework to di-
rectly test the interaction between a specific locus and
interplant competition. We used a set of eight segmental
introgression lines (SILs) derived from the cross B73 3

Tx303. We show the importance of testing locus-by-
density interaction directly by comparing the results
from our analysis with the results from the traditional
separate analysis and overlaying of the results. The
flexibility to model heterogeneous error covariance
matrices in mixed models is an important advantage
since the QTL-by-stress level interaction tests account
for heteroscedasticity imposed by the density treat-
ment. This complements previous research demon-
strating the utility of mixed-model QTL analysis to
account for heteroscedasticity and spatial trends of
within-environment error variation and multiplicative
genotype-by-environment interactions (Piepho 1997,
2005; Smith et al. 2001a,b).

METHODS

Maize population: Entries in this study were eight
SILs provided by J. Holland selected from a population
of 89 lines developed by C.W. Stuber at North Carolina
State University and described by Hostert (2002).
Note that in the original publication these lines were
referred to as near isogenic lines (NILs). SILs were
developed from the cross of the well-studied inbred line
B73, as the recurrent parent, and an unrelated sub-
tropical inbred line Tx303, as the donor parent. Tx303
introgressions were located on both arms of every chro-
mosome with the exception of the long arm of chro-
mosome 3, the short arm of chromosome 7, and the
short arm of chromosome 8. Each of the 89 SILs was
composed of a unique Tx303 introgression event and
had on average 2.5% donor parent alleles at nontarget
loci (Hostert 2002; J. B. Holland, unpublished data).
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Populations of SILs are particularly well suited to
elucidate the genetic and physiological bases of the
association among developmental and yield component
traits that may be related to grain yield. SILs allow for
a more accurate assessment of the breeding value of
morphophysiological traits than do independent hy-
brids and, in some cases, provide genetic resources to
aid the map-based cloning of the gene underlying the
QTL (Tuberosa et al. 2002a). The population of SILs
studied here has been extensively evaluated for various
agronomically important characteristics. The perfor-
mance of a subset of 56 SILs for days from planting to
anthesis and silking, anthesis-silking interval, final plant
height, height to ear insertion, number of ears per plant
at maturity, and percentage of barren plants was ex-
amined at low and high plant population densities in
replicated trials in one North Carolina location in 2001
(Hostert 2002) and one Indiana location in 2002.
In each of the years 2000 and 2001, testcross progeny
derived from crossing each SIL to an inbred line (Mo17)
were evaluated for days from planting to anthesis and
silking in one North Carolina environment and also for
final plant height, height to ear insertion, grain moisture,
and grain yield in four evaluation sites in North Carolina.

The eight SILs used in this study were selected on the
basis of information on their performances as inbred
lines per se and as hybrids from the above studies. SILs
were selected according to their differences from the
recurrent parent B73 principally in time to anthesis,
time to silking, anthesis-to-silking interval (ASI), and
yield as a hybrid when crossed to Mo17. The subset of
selected SILs represented most of the variability present
for the traits mentioned above. These SILs included the
lines with smaller nontarget introgressions (Table 1)
and significant differences from the recurrent parent
B73 in at least one trait (Table 2).

To evaluate the introgressed segments in hybrids,
the selected SILs were crossed to inbred line Mo17, a
member of the Lancaster heterotic group. Mo17 was
selected as the tester parent because the B73 3 Mo17
hybrid was a very succesful hybrid nearly 3 decades ago
and is the most popular example of the cross between

TABLE 1

Introgressed Tx303 segments into the recurrent parent B73

SIL
Target locus

(chromosome) Bin
Introgression

size (cM)
% nontarget
introgression

TBBC3-02 UMC147A(5S) 5.01 44 1.8
TBBC3-14 UMC107(1L) 1.10 73 0.8
TBBC3-16 BNL5.46 (4S) 4.03 27 3.2
TBBC3-50 UMC122 (2L) 2.08 71 1.1
TBBC3-55 UMC122 (2L) 2.08 94 1.1
TBBC3-68 UMC076 (1S) 1.03 22 1.2
TBBC3-73 UMC168(7L) 7.06 34 1.3
TBBC3-76 UMC021 (6L) 6.05 50 3.1
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lines from the Stiff Stalk Synthetic and Lancaster het-
erotic groups. Both inbred lines (Mo17, B73) and the
B73 3 Mo17 hybrid have been extensively studied. As
a result, QTL studies for several traits performed on
the progeny of this cross have been published (Stuber

et al. 1992; Kaeppler et al. 2000; Mickelson et al. 2002;
Carson et al. 2004). Seed for the eight selected SILs and
their crosses to inbred line Mo17 was increased in the
winter of 2003 in Puerto Rico.

Experimental design and data collection: Entries
were arranged in a split-split-plot design (Figure 1).
The study was replicated three times (three blocks) in
each of two locations. The whole-plot treatment factor
was inbreeding level, the SILs (inbreds) or the cross of
the SIL with Mo17 (hybrids). The subplot treatment
factor was density with two levels, a high population
density planted at 100,000 seeds ha�1 (38 seeds row�1)

and a low population density planted at 50,000 seeds
ha�1 (19 seeds row�1). The sub-subplot treatment factor
was the genotype, in this case the eight Tx303 intro-
gressions (Table 1). To assure uniform pollen avail-
ability for late-flowering genotypes, pollinator rows of
different maturity were uniformly distributed across the
study. Each sub-subplot consisted of four rows measur-
ing 5 m long with 0.76-m interrow spacing and a 1-m
alley at the end of each plot.

The experiment was planted on May 26, 2003, in the
Purdue University Agronomy Center for Research and
Education near West Lafayette (40 339 36$ N, 86 559 48$
W), Indiana, on a soil classified as poorly drained
Chalmers silty clay loam and on May 27, 2003 in the
Throckmorton–Purdue Agricultural Center (TPAC)
(40 179 52$ N, 86 549 10$ W) near Romney, Indiana,
on a Raub silt loam soil.

Figure 1.—A replicate of the split-split-plot experimental design. Gray borders represent pollinator rows. Each replicate con-
sists of two whole plots with the inbreds and hybrids. Each whole plot includes two subplots with the density treatments. The eight
selected entries were planted in eight sub-subplots randomized within each subplot. For each trait, the introgression effect for
each sub-subplot was estimated by comparing the individuals with the introgression to the individuals without the introgression.
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To account for spatial variability in the field, and to
enhance the ability to detect introgression effects for
inbreds, each sub-subplot was planted with two consec-
utive rows of the SIL paired to two consecutive rows of
B73. Measurements were taken on the central two rows
of each sub-subplot, one B73 and the other SIL. To
account for border effects due to the alley, data were not
collected on the first and last three plants in a row
(Figure 1). Data collected were height to the uppermost
stretched leaf tip on a weekly basis from week 6 to week 9
after planting, height from the ground to ear insertion,
height to the collar of the flag leaf, date of first visible
anther, date of first visible stigma, kernel weight for each
ear, and number of kernels in each ear. ASI was obtained
by subtracting the Julian date of first visible anther from
the Julian date of first visible stigma. These traits were
selected because they represent different ontogenic
stages of the corn plants. In addition, some of these
traits have been reported as responsive to environmen-
tal stresses while others are unaffected in the presence
of similar stresses. ASI has been associated with the
status of the plant under water deficiency conditions
in the period bracketing flowering (Bolanos and
Edmeades 1996). Plants susceptible to drought stress
tend to delay silking and have longer ASIs. Anthesis
date, on the other hand, is less affected in the presence
of several different stresses (Ribaut et al. 1996, 1997).
Plant heights modify the ability of a genotype to avoid
shading by neighboring individuals. Investigations
aimed at studying the effect of plant population den-
sity and planting rectangularity on plant adaptation
to shaded environments have documented changes in
plant heights (Maddonni et al. 2001; Borras et al. 2003).
Grain yield per plant and its primary yield component,
kernel number (Chapman and Edmeades 1999), were
measured to evaluate the fitness of the SILs.

Sub-subplots in the hybrid whole plots were planted
and evaluated following the above description for in-
bred whole plots. The difference was that each sub-
subplot contained two consecutive rows of the SIL 3

Mo17 hybrid paired with two consecutive rows of B73 3

Mo17 hybrid (Figure 1), instead of the SIL and B73
inbred lines.

STATISTICAL ANALYSIS

Estimating effects of the introgressions: To gain pre-
cision in the estimation of the effects of the Tx303 in-
trogressions, we first computed estimates of the Tx303
introgression effects for all eight traits at the sub-subplot
level. In each sub-subplot, the estimates of the Tx303
introgression effects on the eight traits were obtained
from the analyses of observations scored on the two
paired rows planted in the center (Figure 1). For sim-
plicity, the statistical models used to estimate the effects
of the introgressions are described for inbreds. The
estimates of Tx303 introgression effects for height from

the ground to ear insertion (HEI), height to the collar
of the flag leaf (HCF), ASI, grain yield per plant (GY),
and number of kernels per plant (KNP) were obtained
from fitting the linear model

zij ¼ m1 ti 1 eij ð1Þ

to all plants scored in a sub-subplot. In Equation 1, zij
represents the trait value scored on plant j of genotype i,
i ¼ {B73, SIL}, ti represents the effect of the genotype i
on the trait, and eij is a random within-plot error term
assumed normally distributed with mean 0 and variance
s2
e . The Tx303 introgression effects were estimated as

tSIL � tB73.
The height of each plant was measured weekly in

centimeters (see above). Tx303 introgression effects on
initial and midseason plant growth rates were obtained
from fitting a random coefficient model to the plant
height data scored from week 6 through week 9 after
planting. For each sub-subplot, the model

wij ¼ b0 1b1ðgenotypeÞ1b2ðxijÞ1b3ððgenotypeÞðxijÞÞ
1 ai 1 biðxijÞ1 eij

ð2Þ

fits a regression line, where wij represents the height of
plant i at week j, j ¼ {6, 7, 8, 9} (week 6 was considered
as the time point 0, and the remaining weeks were
considered as time points 1, 2, and 3); xij represents the
week on which the height measurement wij was taken;
b0 and b1 represent the fixed-effects intercept of the
model; b2 and b3 represent the fixed-effects slope of the
model; ai and bi(xij) represent a random intercept and
slope for plant i, respectively; eij is a random error term;
and genotype is an indicator variable with value 1 for
the SIL and 0 for B73. Random effects ai and bi were
assumed to be normally distributed with mean 0 and
variances s2

a and s2
b , respectively. Error terms eij were

assumed to be normally distributed with mean 0 and
variance s2. Variances were estimated using the re-
stricted maximum-likelihood (REML) method. Fixed
and random intercepts and slopes were estimated by
solving Henderson’s mixed-model equations. Two Tx303
introgression effects can be estimated from Equation 2:
the effect of the introgression on the initial plant growth
rate (HW6) (b̂1) and the effect of introgression on mid-
season plant growth rate (HGR) (b̂3).

Days from planting to anthesis data are often strongly
skewed (Vermerris and McIntyre 1999). Several
survival models were evaluated to determine the prob-
ability distribution that best fit the data. Models based
on log-normal and gamma distributions were equiva-
lent. Since censoring was ,3%, and log-normal survival
models fit well, estimates of the effects of the intro-
gressed segments on days to anthesis were obtained
from fitting linear models similar to Equation 1 to
the logarithm of the time to the event. The Tx303
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introgression effects for days from planting to anthesis
(DTA) were then estimated as tSIL � tB73. This approach
is equivalent to fitting a log-normal model in survival
time analysis with no censored data; it has the advantage
that the estimated Tx303 introgression effects are nor-
mally distributed (Lawless 1982). The resulting differ-
ences are expected to be normally distributed. Similarly,
differences between hybrids SIL 3 Mo17 and B73 3

Mo17 were derived from each sub-subplot of the hybrid
whole plots. Since the scales of the estimated introgres-
sion effects traits varied with the traits, the introgression
effects were standardized by multiplying by a constant.
All estimated introgression effects derived for one trait
were standardized using the same constant. The con-
stants for all eight traits were selected so that the esti-
mated introgression effects had a constant variance of 2.
This standardization was used to facilitate the conver-
gence of the algorithms in the multitrait analysis.

Correlation among effects of the introgressions:
Simple Pearson correlations among the traits, within
the different inbreeding levels and density treatments,
were calculated on the introgression effects estimated
as described in the previous section. These correla-
tions represent phenotypic correlations among traits.
P-values for the Pearson correlations are computed by
treating t ¼ (n � 2)1/2[(r2/(1 � r2)]1/2 as coming from
a t-distribution with n � 2 d.f., where r is the sample
correlation and n is the sample size. A false discovery
rate (FDR) of 2% was used as the threshold to determine
significance (Benjamini and Hochberg 1995).

Mixed model for joint analysis of the effects of the
introgressions: The estimated introgression effects on
the eight traits in each sub-subplot were analyzed jointly,
using a multivariate mixed-effects model with repeated
measures at the sub-subplot level (e.g., the estimates for
the eight traits within a sub-subplot) (Wolfinger 1996;
McCulloch and Searle 2001). For the vector Ys,

Ys ¼

y
ðHEIÞ
ijklm

y
ðHCFÞ
ijklm

y
ðASIÞ
ijklm

y
ðGYÞ
ijklm

y
ðKNPÞ
ijklm

y
ðHW6Þ
ijklm

y
ðHGRÞ
ijklm

y
ðDTAÞ
ijklm

2
66666666666666666666664

3
77777777777777777777775

ð3Þ

of the introgression effects estimated for all traits in a
sub-subplot s of linear mixed-effects models whose ele-
ments fit a split-split-plot experimental design for each
trait. In Equation 3,

y
ðtÞ
ijklm ¼ mðtÞ 1L

ðtÞ
i 1C

ðtÞ
j 1 ðLCÞðtÞij 1 d

ðtÞ
ik 1 ðCdÞðtÞijk

1D
ðtÞ
l 1 ðLDÞðtÞil 1 ðCDÞðtÞjl 1 ðCdDÞðtÞijkl

1G ðtÞ
m 1 ðLGÞðtÞim 1 ðCGÞðtÞjm 1 ðDGÞðtÞlm

1 ðCDGÞðtÞjlm 1 e
ðtÞ
ijklm

for t ¼ {HEI, HCF, ASI, GY, KNP, HW6, HGR, DAT}.
yijklm

(t) are the effects on trait t of the introgressed seg-
ments m estimated for a sub-subplot with density
treatment l in block k within location i. Li

(t), Cj
(t), dðtÞik ,

Dl
(t), and Gm

(t) represent location, inbred/hybrid, block
within a location, density treatment, and the introgres-
sion effects for trait t, respectively, and e

ðtÞ
ijklm represents a

random error term. Three and four-way location inter-
actions were tested in preliminary analyses. All P-values
were .0.8 on the basis of the corrected (Satterthwaite)
F-test. Therefore, these terms were not included in the
final model. Block within location and their interactions
with the other factors were considered random effects,
whereas the remaining terms in the model were con-
sidered fixed. The random effects d

ðtÞ
ik , ðCdÞðtÞikj , and

ðCdDÞðtÞijkl were assumed independent from each other
and normally distributed with means 0 and variances s2

d,
s2
Cd, and s2

CdD , respectively.
For each of the vectors Ys there is a corresponding

vector es of residuals. The variance of es was assumed to
have an unstructured variance–covariance matrix Rs

with Cov(es, es9) ¼ 0 for all subscripts s and s9. This last
equation states that the covariance between any two
vectors of residuals es is 0, i.e., that errors associated with
different experimental units are independent. How-
ever, errors of different traits on the same experimental
units may be correlated.

Variances were estimated using the REML method.
Fixed and random effects were estimated by solving
Henderson’s mixed-model equations (Henderson 1984),
which generates estimates of the fixed effects that
are equivalent to generalized least-squares estimators
(GLSE) for fixed effects and best linear unbiased
prediction (BLUP) of random effects (Searle et al.
1992).

Hypothesis testing: One of the advantages of mixed-
effects models is the ability to formally test for treatment-
dependent heteroscedasticity. Differences in the error
variances as well as the covariance among errors for
each trait due to the density treatments can be tested
using a likelihood-ratio test (LRT). In general, a LRT is a
likelihood-based approach to compare the adequacy of
two nested models (Bozdogan 1987). The test statistic
is constructed by taking twice the difference in the log
likelihood of two models of interest. Under the null
hypothesis that the two models fit the data equally well,
the LRT statistic is asymptotically distributed x2 with de-
grees of freedom equal to the difference in the number
of parameters between the full model and the reduced
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model. Unfortunately, little theoretical information is
available on the behavior of the LRT for selection of the
structure for the variance–covariance matrix in a mixed
model with reasonable sample sizes in the lowest level
(in our case 48). Therefore, we used information
criteria along with the LRT to select among models for
the variance–covariance matrix. Three models for R
were compared: (i) models with a single variance–
covariance matrix Rs for all sub-subplots (i.e., error
variances of the effects of introgressions and the error
covariances among them are the same for all the sub-
subplots), (ii) models where the variance–covariance
matrices Rs are allowed to vary between inbreds and
hybrids, and (iii) models where the variance–covariance
matrices Rs are allowed to vary between inbreds and
hybrids and density treatments. The first model has 36
parameters, the second has 72 parameters, and the third
model has 144 parameters in the R matrix.

Once the variance–covariance model for the residuals
was selected, a series of hypothesis tests were carried out
(Figure 2). To test the interaction between the effect of
introgression m on trait t and density levels for inbreds
and hybrids separately, we tested m

ðtÞ
jlm ¼ m

ðtÞ
jl9m (Figure 2,

tests a). If the effect of the introgression m on trait t is
strictly additive, then we expect mðtÞ

jlm ¼ 2mðtÞ
j9lm and m

ðtÞ
jl9m ¼

2mðtÞ
j9l9m (i.e., in the inbred whole plots j each plant has

two copies of the introgression, whereas in the hybrid
whole plots j9 each plant has only one copy). The above
equalities can be rewritten as m

ðtÞ
jlm � m

ðtÞ
jl9m ¼ 2ðmðtÞ

j9lm �
mðtÞ
j9l9m

Þ, which can be seen as a test for strict additivity
in the interaction of the effect of the introgression m
on trait t and density levels. For significant density-by-
introgression interactions, we tested for changes in the
density responses across locations. None of the reported
14 significant density-by-introgression interaction ef-
fects changed significantly across locations.

In addition to the interaction between the effect of
the introgression and density, the main effects of the
Tx303 introgressed segments m were estimated and
tested. In cases where the effect of the Tx303 intro-
gressed segment m on trait t changed with density
treatments (i.e., significant introgression-by-density in-
teraction), the effects were estimated and tested for
each density treatment individually using m

ðtÞ
jlm ¼ 0 and

m
ðtÞ
jl9m ¼ 0 (Figure 2, tests b). If the introgression-by-

density interaction was not significant, the effects of the
introgression m on trait t were estimated as the average
effect across densities and tested using m

ðtÞ
jm ¼ 0 (Figure

2, tests c). In our data analysis, significance levels were
corrected for multiple testing using the FDR procedure
(Benjamini and Hochberg 1995), a review of which
can be found in Verhoeven et al. (2005). The FDR
procedure correction was implemented to address
inflation of type I error rates due to multiple testing.
Locus-by-density interaction tests (Figure 2, test a) were
adjusted to a FDR level of 20%. Tests for introgression
effects (Figure 2, tests b and c) were adjusted to a FDR
level of 5%. Differences in levels were used to accom-
modate difference in power for these tests and in an
attempt to balance type I and type II errors. All analyses
were conducted in SAS and mixed models were imple-
mented in the Proc Mixed procedure (SAS Institute,
Cary, NC). The data and SAS programs are available
upon request.

A large amount of research has been directed at
estimation using mixed models with repeated measures.
Estimation techniques appear to work well in both large
and small samples. However, much less effort has been
directed toward methods for inference. Except for some
simple mixed models, there is not a general form for
an exact test for fixed effects. Various asymptotic test
statistics work well in large samples, but poorly in small

Figure 2.—Example of the hypothesis tests
performed for each Tx303 introgression. The
graph illustrates the effect of the Tx303 intro-
gressed segment at locus BNL5.46 evaluated in
the inbred genetic background. QTL-by-density
interactions were tested by comparing the effects
of the introgressions at the two densities [tests a:
m
ðtÞ
jlm ¼ m

ðtÞ
jl9m]. If the interaction was not significant,

the mean effect of the introgression was tested
by test b: ðmðtÞ

jlm 1 m
ðtÞ
jl9m)/2 ¼ m

ðtÞ
jm ¼ 0. When the

interaction QTL-by-density was significant, the
effect of the introgression was evaluated for each
density separately [tests c: mðtÞ

jlm ¼ 0 and m
ðtÞ
jl9m ¼ 0].

The data plotted are the least-squares means di-
vided by their corresponding standard errors.
Error bars represent 2 standard errors from the
mean.
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samples producing inflated type I error rates (Barton

and Cramer 1989; Schluchter and Elashoff 1990).
Some approaches have been proposed to control
the inflated type I error rates of these tests. For the
likelihood-ratio test, Bartlett’s correction may be used
(Bartlett 1937). A further refinement is to use an
adjusted likelihood. A combination of these two ap-
proaches appears to work well with as few as 12 in-
dependent subjects (Zucker et al. 2000). Unfortunately,
these methods involve complex calculations and, except
for simple mixed models, they are not readily available
and easy to implement.

For the approximate F-tests of fixed effects, a Sat-
terthwaite-type adjustment for the degrees of freedom
can improve the approximations (McLean and Sanders

1988). However, these corrected F-tests still have in-
flated type I error when the variance–covariance matrix
is unstructured and the sample size is small (Catellier

and Muller 2000). For example, Catellier and Muller

(2000) reported a type I error rate of 0.16 with six
repeated measurements, 24 independent subjects, and
no missing data. Another approach to inference for
fixed effects in mixed models consists of constructing
a semiparametric bootstrap by sampling from the best
linear unbiased predictor residuals. Although quite
popular, it has been shown that such a bootstrap will
consistently underestimate the variation in the data in
finite samples (Morris 2002).

To examine whether inflation of type I error for the
corrected F-test of fixed effects was an issue for our
particular study, we conducted a simulation. Our study
consists of eight repeated measurements with 48 in-
dependent subjects for each class of heterogeneity
and no missing data. To estimate the coverage level of
Satterthwaite-corrected F-tests in our analysis, we mir-
rored the simulation described by Catellier and
Muller (2000). We generated 1000 samples from the
null distribution, a multivariate normal distribution
with mean vector 0 and variance–covariance matrix of
data S. For S, the estimated variance–covariance matrix
V from the analysis of our experimental data was used.
Data were simulated using the ‘‘rmvnorm’’ function of
SPLUS (version 6.1, 2002; Insightful, Seattle), main-
taining the structure of the experimental design. For
each randomly generated data set, we computed the
P-value for the Satterthwaite-corrected F-test of location
effect. We then rejected the null hypothesis if this
P-value was less than the nominal level of 0.05. The
number of times in the 1000 trials that this test was re-
jected is an estimate of the type I error rate of the test.
The estimated type I error rate of this F-test for a nom-
inal level of a ¼ 0.05 was 0.1022.

The above examination is for a single test at a nominal
level of 0.05. We performed multiple tests and corrected
them using a FDR procedure. The FDR correction
is generally found to be conservative (Storey and
Tibshirani 2003). To determine the approximate ex-

pected inflation for a single test after our multiple-
test correction, we considered the P-value for the nom-
inal level determined by the FDR procedure. The
threshold for a SIL-by-density interaction effect to be
declared significant after implementing the FDR pro-
cedure at the 20% level was a P-value of 0.0143. A
nominal P-value of 0.0143 would result in a type I error
rate for an individual test of 0.0412 on the basis of our
simulation results. The threshold for the main effect of
SIL to be declared significant after implementing the
FDR procedure at the 5% level was 0.0240. A nominal
P-value of 0.0240 results in a nominal type I error rate of
0.0628 on the basis of our simulations. On the basis of
these simulations and our use of FDR control we con-
clude that, in this particular case, inflation of the type I
error rate is modest, but worthy of careful consideration
when drawing conclusions. In fact, any implementation
of F-tests in a mixed model requires careful consider-
ation of these issues, as missing data and small sample
sizes can result in severe inflation of type I error. Fewer
independent subjects for each class of heterogeneity or
more traits will produce F-tests with higher inflation.

RESULTS

The unadjusted averages of traits evaluated in this
study for the two parental lines (B73, Tx303) of the pop-
ulation and their hybrid progeny to Mo17 are displayed
in Table 3. Grain yield per plant and yield components
in inbred Tx303 are measured on very few individuals as
the majority of plants in this partly subtropical inbred
line produced multiple pseudo-ears in each node with-
out kernels. In addition, the few plants without this
peculiar manifestation produced few kernels. Density
treatments were consistent with works published pre-
viously (Modarres et al. 1998; Maddonni et al. 2001;
Borras et al. 2003).

Increasing plant density increased anthesis silk in-
terval and decreased grain yield per plant, kernel
number per plant, and weight of 1000 kernels for all
genotypes (Table 3). The increases in ASI and decreases
in grain yield per plant were similar among genotypes.
In contrast, B73 3 Mo17 responded to increasing
density with a much greater decrease of kernel number
per plant but with a lower decrease of kernel weight
than that of Tx303 3 Mo17. These two components of
grain yield counteracted each other, but did not entirely
cancel each other out: the yield of B73 3 Mo17 was
more affected by higher density than that of Tx303 3

Mo17 (a decrease of 76 vs. 63.5 g pl�1). Nevertheless,
B73 3 Mo17 was higher yielding than Tx303 3 Mo17
under both densities.

The response to density treatment can be measured
in many different ways. Density treatments may induce
changes in the variances or mean responses of a par-
ticular trait or in the correlations among traits.
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Phenotypic correlations among physiological traits:
The phenotypic variances of the introgression effects
were smaller in high-density stands regardless of in-
breeding levels. Phenotypic variance and covariance
estimates obtained from inbreds were larger than es-
timates obtained from the hybrid progeny.

Introgression effects for grain yield per plant were
positively correlated to the effects on kernel number per
plant (Table 4), results that agree with previous reports
that kernel number is the principal yield component in
maize and that its correlation with grain yield is not
affected by stress (Ribaut et al. 1996, 1997; Chapman

and Edmeades 1999; Frova et al. 1999). There was no
statistically significant phenotypic correlation between
ASI and yield components. Both Tx303 inbred and
Tx3033Mo17 hybrid had substantially greater ASI than
B73 or B73 3 Mo17, respectively. ASI of all parental
genotypes increased in a similar fashion under higher
density. Therefore, ASI was not likely to be responsible
for how the genotypes differed for responses to density
measured in terms of yield and its component traits.
Previous research has consistently reported that the phe-
notypic correlation between ASI and yield increases un-
der intermediate to severe drought conditions (Bolanos

and Edmeades 1996; Ribaut et al. 1997; Betran et al.
2003). However, the relationship between ASI and grain
yield per plant may be specific to drought stress. Under
other types of stresses, ASI is not always affected. For
instance, wet, cold growing conditions that reduced
grain yield by nearly 20% did not affect ASI and its
phenotypic correlations with other traits (Beavis et al.
1994; Veldboom and Lee 1996; Ribaut et al. 1997). The
introgression effects on height of primary ear insertion
were negatively correlated to the introgression effects on
ASI in the hybrid background, but not in the inbred
background.

Introgression effects on days to anthesis were signif-
icantly negatively correlated to introgression effects on
initial growth (plant height 6 weeks after planting) at
both densities (Table 4), indicating that Tx303 seg-
ments that induced faster plant development at the
beginning of the season also induced earlier anthesis.
Introgressions associated with faster midseason plant
development rate were also phenotypically correlated
with earlier anthesis, but this effect was significant only
in the high-density stands. The effects of Tx303 seg-
ments on ear insertion height were significantly corre-
lated to the effects of the same introgressed segment on
final height. The effects of the introgressed segments on
final height were phenotypically correlated to the ef-
fects on midseason growth rate in both backgrounds
and densities. Introgressions associated with effects on
final plant height tended to be associated with faster
midseason growth rate. However, although introgres-
sion effects on ear height followed the effects on mid-
season growth rate at low densities, they were lower and
not significantly correlated in high densities.
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Choice of the variance–covariance matrix: Hypothe-
sis tests can be affected by the choice of the variance–
covariance matrix. This matrix is estimated from the
data but the structure and complexity must be selected
by the researcher. To select the structure for the
variance–covariance matrix Rn a LRT was performed.
On the basis of the LRT test, the model with a different
variance–covariance matrix for the residuals from each
inbreeding level by density combination (model iii)
fitted the data significantly better than the reduced
models i (LRT¼ 465.6, P, 0.0001) and ii (LRT¼ 196.8,
P , 0.0001) (Table 5).

Little information is available on the behavior of the
LRT for selection of the structure for the variance–
covariance matrix in a mixed model. In some cases,
selection between two structures for the variance matrix
reduces to testing that a variance component is 0. In
these situations, the LRT has low power. This is because
the null hypothesis is on the boundary of the parameter
space, and the distribution of the LRT statistic is not x2

with 1 d.f. However, the LRTs presented here are for null
hypotheses of homogeneity in the variance–covariance
matrices across groups. Therefore, in the selection of
the variance–covariance matrix we used information
criteria as well as the LRT.

The Akaike information criterion (AIC) and Bayes’
information criterion (BIC) were consistent with the
results of the LRT when comparing models i and ii.
When comparing models ii and iii, the AIC was con-
sistent with the results of the LRT. However, unsurpris-
ingly, the BIC indicated that model ii was better than
model iii (Table 5). To decide between these two alter-
natives, we investigated the effect of using one or an-
other structure on the inferences for fixed effects. All
14 significant density-by-introgression interactions de-
tected using model iii were also detected using model ii.
In model ii, two more density-by-introgression interac-
tions were declared significant. These correspond to
borderline tests using model iii. For the tests that the
introgression effects were 0, all 90 tests that were signifi-
cant using model iii were also significant when model ii
was used. No new significant introgression effect was
detected. We then decided to use a less parsimonious
model for the variance–covariance matrix to allow for
the possibility that there was a true difference between
the groups and, in this case, to be more conservative in
our conclusions.

Main effects of the Tx303 introgressions: The effects
of Tx303 segments on the eight traits evaluated in this
study are summarized in Table 6. When introgression
effects were not altered by density treatments, the effect
in Table 6 corresponds to the average effects across
densities. When density treatments altered the expres-
sion of the introgression, the effects at the two density
levels are reported. All but one of the Tx303 introgres-
sions were associated with significant effects for five or
more of the eight traits with the exception of UMC076,
which demonstrated small effects on grain yield per
plant and growth rate. The preselection process may
explain the association with more than one of the
measured traits for all introgressions.
Genotype-by-plant population density interactions:

Significant locus-by-density interaction effects were
detected for all traits except initial plant growth (Table
6). In the inbreds, the effects of the introgressions at
loci UMC147A, UMC021, and UMC168 were constant,
whereas the effects of the remaining five Tx303 in-
trogression events were affected by density treatments
for at least one trait (Table 6). In the hybrids the effects
of introgressions at loci UMC147A, UMC122, UMC076,
UMC168, and UMC021 were affected by density treat-
ments. There were seven significant density responses in
the inbreds, five of which were associated with yield per
plant (loci UMC107 and both events of UMC122) or
kernel number (loci UMC107 and UMC122). There was
no significant density response for flowering-related
traits (ASI and days to anthesis). In contrast, in the
hybrids, five of the seven significant density responses
were observed for flowering-related traits (loci UMC122
and UMC076 for days to anthesis and loci UMC147A,
UMC122, and UMC168 for ASI), while only one re-
sponse (locus UMC021) was significantly different for
kernel number. The tests for interaction between the
effect of the introgression m on trait t and density within
inbred and hybrid states j were performed by compar-
ing the effect of the introgression m in low and high
density: mðtÞ

jlm ¼ m
ðtÞ
jl9m .

In the inbreds, three loci for density response in
grain yield were detected. These were detected at loci
UMC107, BNL5.46, and UMC122. In all three cases, the
Tx303 segments were associated with favorable density
responses (Table 6). At low density, Tx303 segments
at loci UMC107, BNL5.46, and UMC122 reduced sig-
nificantly grain yield per plant by 16.80, 29.66, and

TABLE 5

Log-likelihoods and information criteria for the three models of the variance–covariance matrix R

Model No. of parameters in R �2 Log-likelihood AIC BIC

i. Single Rn for all sub-subplots 36 3522.8 4400.8 5222.3
ii. Rn varies across inbred/hybrid states 72 3254.0 4200.0 5085.1
iii. Rn varies across densities and inbred/hybrid states 144 3057.2 4149.2 5170.9
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TABLE 6

Tests of locus-by-density interaction, locus main effect, and departure from an additive pattern of Tx303
segments as an inbred and as a hybrid

Inbreds Hybrids

Loci Trait Mean effect Low High Mean effect Low High

UMC147A Initial growth (cm wk 6) �3.39 �4.71*
Growth rate (cm wk�1) 0.03 1.13*
Ear height (cm) 8.26* 2.62
Final Height (cm) 14.11* 4.72*
Anthesis date (days) 1.48* 1.08*
ASI (days) 0.00 0.46* �0.21
Kernel no. per plant �86.71* 15.56
Yield (Tn ha�1) �0.96* 0.32

UMC107 Initial growth (cm wk 6) 0.33 �4.58*
Growth rate (cm wk�1) 1.06* 0.63
Ear height (cm) 8.99* 4.29*
Final Height (cm) 9.15* 10.91*
Anthesis date (days) 0.66* 1.49*
ASI (days) �0.19 0.06
Kernel no. per plant �119.51* �20.02 5.22
Yield (Tn ha�1) �0.84* �0.18 0.49a

BNL5.46 Initial growth (cm wk 6) �2.04 �0.70
Growth rate (cm wk�1) �0.44 1.17*
Ear height (cm) 4.40* 11.92* 4.07*,a

Final Height (cm) 16.59* 14.89*
Anthesis date (days) 2.11* 1.40*
ASI (days) �0.25 0.27*
Kernel no. per plant �183.12* �83.14* �22.05a

Yield (Tn ha�1) �1.48* �1.38* 0.13a

UMC122 (event 1) Initial growth (cm wk 6) 1.50 �1.60
Growth rate (cm wk�1) 2.53* 0.89
Ear height (cm) 10.96* 2.80
Final Height (cm) 22.82* 6.66*
Anthesis date (days) 1.04* 0.77*
ASI (days) �0.35 0.57* 0.04
Kernel no. per plant �109.64* �66.69*
Yield (Tn ha�1) �1.36* �0.94* �0.68

UMC122 (event 2) Initial growth (cm wk 6) 2.75 �4.52*
Growth rate (cm wk�1) 4.05* 3.02*
Ear height (cm) 19.91* 7.09*
Final Height (cm) 32.43* 15.71*
Anthesis date (days) 1.91* 1.30* 2.42*
ASI (days) �1.20* 0.47*
Kernel no. per plant �119.49* �44.58*
Yield (Tn ha�1) �1.02* �0.33

UMC076 Initial growth (cm wk 6) �1.69 �1.75
Growth rate (cm wk�1) �0.75 1.31* 1.63*,a

Ear height (cm) 1.16 2.06
Final Height (cm) 2.39 1.94
Anthesis date (days) 0.25 0.78* �0.31
ASI (days) �0.30 �0.06
Kernel no. per plant �26.77 �2.65
Yield (Tn ha�1) �0.54* 0.47

UMC168 Initial growth (cm wk 6) �7.85* �6.05*
Growth rate (cm wk�1) �3.33* �1.09*
Ear height (cm) �9.80* �6.15*

(continued )
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27.10 g pl�1, respectively. However, the introgressed
Tx303 segment at locus UMC107 did not reduce grain
yield at high density, and loci BNL5.46 and UMC122
reduced grain yield by only 13.81 and 9.38 g pl�1 in high-
density stands. Two loci for density response in kernel
number were detected at UMC107 and BNL5.46. These
two loci for kernel number followed the same trend
as the segments described for grain yield, as expected
given the high correlation among these traits. Two
loci for density response in ear height and midgrowth
rate were detected at loci BNL5.46 and UMC076,
respectively. In both cases, the effects of the Tx303 in-
trogressed segments were enhanced under higher den-
sities. BNL5.46 induced a significant increase in ear
insertion height of 4.40 cm in low-density stands, but
such an effect was more than twice as large (11.92 cm) in
high-density stands. Introgression at locus UMC076 had
no effect on growth rate in low-density stands, but was
associated with a significant increase in growth rate of
1.31 cm week�1 in high-density stands.

In the hybrids, 1 locus for kernel number (UMC021)
was associated with density response. At low density,
plants with the B73 segment set nearly 73 more kernels
per plant than plants with the Tx303 allele (Table 6). In
contrast, plants with the Tx303 allele, although not
statistically significant, set nearly 20 more kernels per
plant than plants with the B73 allele in the high-density
stand. Three loci for density response in ASI were
detected (Table 6). They were detected at loci
UMC147A, UMC122, and UMC168. In the first two loci,
the Tx303 segments were associated with significantly
longer ASIs in low-density stands. However, the effects of

these two Tx303 segments were not statistically sig-
nificant in high-density stands. Conversely, the Tx303
segment at locus UMC168 was associated with signifi-
cantly greater ASI at both densities, and the effect of the
introgression at high density was approximately twice as
large as the effect at low density. Two loci were detected
for density response in days to anthesis. The response to
density of these two Tx303 segments were different. At
locus UMC122, Tx303 introgression significantly de-
layed anthesis by 1.3 days in low-density stands, and this
effect was increased to 2.42 days at the higher density.
However, the Tx303 segment at locus UMC076 delayed
anthesis in the low-density stand only by 0.78 days, with
no significant effect in the high-density stand. A locus
for density response associated with final height was
detected at locus UMC168. The Tx303 segment was
associated with plants 8.27 cm taller at the end of the
season at low density, but only 1.38 cm taller at high
density (Table 6).

None of the density responses detected in inbreds
were detected in hybrids and vice versa. These differ-
ences in density responses of inbred and hybrid plants
may be attributed to genetic background effects (epis-
tasis) or dose effects (i.e., in the inbreds there are two
copies of the introgression, whereas the hybrids have
only one copy), different dominance interactions be-
tween Mo17 and Tx303 or B73 alleles, or a combination
of these effects. To evaluate the dose hypothesis, we
tested whether the density response observed in the
hybrid background was half of the response observed in
the inbred background: mðtÞ

jlm � m
ðtÞ
jl9m ¼ 2ðmðtÞ

j9lm � m
ðtÞ
j9l9mÞ.

For five of the seven significant density responses

TABLE 6

(Continued)

Inbreds Hybrids

Loci Trait Mean effect Low High Mean effect Low High

Final Height (cm) �8.24* 8.27* 1.38*
Anthesis date (days) 2.71* 1.63*
ASI (days) �0.54* 0.78* 1.37*
Kernel no. per plant �160.53* �74.19*
Yield (Tn ha�1) �2.21* �1.45*

UMC021 Initial growth (cm wk 6) �1.27 �3.29*
Growth rate (cm wk�1) �2.46* 0.41
Ear height (cm) �1.51 2.71
Final Height (cm) 4.87* 2.94*
Anthesis date (days) 0.65* 0.74*
ASI (days) 0.82* 0.19
Kernel no. per plant �96.09* �73.50* 20.49
Yield (Tn ha�1) �0.91* �0.29

Data reported are generalized least-squares mean effects expressed in the original scale to facilitate interpretation. Significance
was determined on the basis of the standardized data as described in the text. If density treatments altered the effect of the in-
trogression (FDR ¼ 20%), the effect for each density level is reported. Otherwise, the mean effect of the introgression is reported.
*Statistically different from 0 (FDR ¼ 5%).

a Segment-by-density effect in the hybrid does not differ significantly from expectation under the dose hypothesis.
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detected in the inbreds, the density responses in the
hybrids were consistent with a dose effect (Table 6). The
other two density responses detected in the inbreds
(locus UMC107 for kernel number and locus UMC122
for grain yield per plant) were not consistent with the
dose hypothesis, and, in fact, inbred responses were
�5.11 and �1.1 times that of hybrid responses, re-
spectively. In both cases the density responses in the
inbreds were in different directions from the density
responses in the hybrids.

DISCUSSION

There has been considerable discussion in the liter-
ature as to the definition of a QTL for stress tolerance
and how to effectively use this information in marker-
assisted selection schemes. Selection of alleles that are
favorable under the conditions that are the targeted
production conditions is desired. If an allele has a nega-
tive effect under a subset of conditions, this does not
preclude its utility for other production environments if
it interacts with production conditions, such as planting
density. For example, segment UMC021 has a signifi-
cantly negative effect on hybrid kernel number in low
density but a positive effect (not statistically significant)
on hybrid kernel number in high density. UMC107 and
UMC147A display a significantly negative effect on yield
and kernel number in inbreds. These segments display a
positive effect on the traits in hybrids (not statistically
significant). This demonstrates that the allelic effect of a
particular segment depends upon the genetic context
in which it is measured.

Previous studies have assigned QTL for stress toler-
ance on the basis of comparisons of the regions as-
sociated with the traits in separate analyses, arguing, for
example, that a QTL was associated with stress tolerance
if the QTL was significant in the stress environment and
not significant in the unstressed environment. In our
study, 36 locus-by-density interactions would have been
identified if separate analyses were compared. We find
statistical evidence for 14 interactions between the locus
and density response. Of these 14, only 8 were identified
using separate analyses and there were 6 additional
statistically significant locus-by-density interactions that
were not detected by the separate analysis approach.
Detection of loci based upon separate analyses fails to
detect loci for response to stress when the locus was
significant in both individual analyses, but where the
size of the effect changed between the low-stress and
high-stress environments. On the other hand, many loci
with moderate to small constitutive effects can be mis-
takenly associated with response to stress. In this case,
the magnitude of the effect of the locus does not change
across stress conditions, but error variance induced
by the imposition of the stress does change. As a con-
sequence, the failure to account for variance hetero-
geneity when comparing parallel results may lead to

erroneous conclusions. Modeling locus-by-stress level
interaction effects allows for direct comparison of the
effects for individual loci detected under contrasting
stress levels. Direct modeling of this interaction adds a
powerful tool to QTL mapping of stress response.
Overall, by taking into account both the size and the
direction of the genetic effects relative to the variability
present under both stress conditions, estimation of
locus-by-stress level interaction provides a direct statisti-
cal test for detection of QTL responsible for stress
tolerance that accounts for heterogeneity of variance.
The quantified evidence based upon the statistical test is
often different from what the simple visual comparison
would indicate as evidenced by our study.

In our study, the segments associated with density
response in inbreds and hybrids were not the same. In
addition, the effects of density on the phenotypic cor-
relations among traits varied across inbreds and hybrids.
This indicates that there are major differences involved
in the physiological response to increased interplant
competition between inbreeding levels. These results
are consistent with the emerging understanding of ge-
netic variation among inbred lines of maize (Brunner

et al. 2005; Fu and Dooner 2002) and are also consistent
with traditional understanding of dominance, epistasis,
and/or pleiotropy. The differences between inbreds
and hybrids highlight the importance of studying
hybrid maize in conjunction with inbreds when de-
veloping effective strategies for crop improvement. The
inclusion of the SILs in this study permitted us to ad-
dress the issue of whether all genome regions affecting
yield in Tx303 and B73 contributed similarly to these
responses or if some genome regions from Tx303 could
contribute to improved hybrid yield under density
stress, despite the overall yield inferiority of the Tx303
genotype in the midwestern location.

The phenotypic correlation between days to anthesis
and midseason growth rate was not significant at low
densities, but was significant in high-density stands in
both genetic backgrounds. Reductions in midseason
growth rate at high density may indicate lack of adap-
tation to high levels of interplant competition, which
results in delayed flowering. Similarly to the study by
Beavis et al. (1994), our data showed a small, statistically
insignificant phenotypic correlation between ASI and
kernel number or grain yield in both of the density treat-
ments. Phenotypic correlation between ASI and yield
increases under intermediate to severe drought con-
ditions (Bolanos and Edmeades 1996; Ribaut et al.
1997; Betran et al. 2003). In our study, pollen availabil-
ity during the entire flowering period might have
masked the detrimental effect of longer ASI on grain
yield observed in other studies (Bolanos and Edmeades

1996; Ribaut et al. 1997; Betran et al. 2003).
Grain yield per plant and kernel number were not sig-

nificantly correlated to other traits across backgrounds
and densities. In the inbred background at high denisty,
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grain yield and kernel number seemed to be consis-
tently, positively more correlated to early to midseason
growth rates than to any other traits (Table 4). Further-
more, in inbreds the relationship among these pheno-
typic correlations changed with density. In low density,
the phenotypic correlation between growth rate and
kernel number/grain yield is higher in the hybrids than
in the inbreds. At low density, both kernel number and
grain yield showed higher correlations with initial plant
growth, but these traits showed higher phenotypic
correlation to final plant height and midseason growth
rate as the density increased. These results are not
surprising because density treatments establish a com-
petition for light. By minimizing shading effects, intro-
gressions that induced faster growth rates when the
competition for light was established tended to yield
better. In summary, trait correlations in QTL studies
aimed at mapping tolerance to interplant competition
seem to be markedly different from those for other types
of stresses. Under shading situations, grain yield seems
to be more related to genetic factors associated with the
ability to intercept light.

The SIL phenotypes reported here were generally,
but not always, consistent with the responses observed in
the initial studies that were used to select them. For
example, effects of the introgressions on anthesis date
were consistent between the two studies for all SILs
except TBBC3-50 (UMC122, event 1) and as inbred and
TBCC3-76 (UMC021) as a hybrid. In each of these cases,
the introgressions had significantly positive effects on
anthesis date in the present study (Table 6), but
nonsignificantly negative effects in the previous study
in North Carolina (Table 2). Some of these discrep-
ancies may be due to greater experimental precision in
the present study (where fewer genotypes were studied,
leading to less within-block heterogeneity) or due to
genotype-by-environment interactions arising from dif-
ferences between the environments in North Carolina
and Indiana. More serious was the significantly negative
ASI effect of TBCC3-73 (UMC168) over densities in the
current study (Table 6) compared to the significantly
positive ASI of the same line under low density in the
previous studies in North Carolina and across densities
in Indiana (Table 2). The environmental factors that
cause this difference were not identifiable in this study,
but their elucidation is of interest to better understand
the three-way interactions of genotype, density, and
environment.

The loci identified here can also be compared by map
position to loci previously identified in B73 3 Mo17
mapping populations. Backcrosses of F3 lines from this
cross to either parent were studied by Stuber et al.
(1992), and only one of their yield QTL maps to a re-
gion covered by the introgressions studied here. Stuber

et al. (1992) reported a major yield QTL on chromo-
some 1, in the same region as the introgression around
UMC107, and the Tx303 allele at this introgression

conferred a yield increase relative to the B73 3 Mo17
hybrid in the initial study of the introgression lines
(Table 2). In the current study, the introgression at this
region did not significantly increase hybrid yield, but
did significantly reduce the inbred yield at low density
(Table 6). Furthermore, UMC107 is closely linked (�5
cM on Pioneer 1999 Composite Map, www.maizegdb.
org) to phi120, which was linked to a major QTL for leaf
angle in the B73 3 Mo17 RIL population studied by
Mickelson et al. (2002). We did not measure leaf angles,
so the physiological relationships between leaf angle,
density responses, and inbred–hybrid responses are
uncertain, but the concordance of these results suggests
that further analysis of this region could reveal a part of
the genetic control of these physiologically related
traits. The other chromosomal regions covered by the
introgression lines in this experiment did not align
with other QTL identified by Stuber et al. (1992) or
Mickelson et al. (2002).

We found 14 significant locus-by-density interaction
effects (Table 6). These responses were observed for
three loci for grain yield per plant, kernel number, and
ASI; for two loci for days to anthesis; and for one locus
for growth rate, ear height, and final height. No density
response was observed for initial growth, which may be
the result of the lack of competition for light during the
first developmental stages. As is the case in any other
complex, quantitative trait in maize, density response
was greatly affected by genetic background. There were
two loci detected in the inbred background that were
not detected in the hybrid background and that did not
follow an additive pattern (locus UMC107 for kernel
number and locus UMC122 for grain yield per plant).
Likewise, none of the seven loci detected for density
response in the hybrid background were detected in the
inbred background.

Multivariate mixed-model techniques are well suited
for mapping genetic loci in complex experimental
design scenarios. The main advantage is that the ex-
plicit statistical testing of genetic-by-treatment effects
can be conducted. Previous approaches rely on the vi-
sual comparison between results overlaid on a common
map. Overlaying results on a common map does not
allow for a statistical assessment of the significance of
the visual differences observed. Changes in magnitude
are particularly hard to assess and can be affected by
changes in variances. The hypothesis-testing framework
of a mixed model allows for a statistical test for loci
responsible for changes in plant response to stress.

Another advantage of the mixed-model methods in
detecting loci contributing to stress response lies in
the ability to estimate and test heterogeneity in the
variance–covariance matrices of the residuals. This is
not possible in least-squares methods, where only one
common variance–covariance matrix for the residuals
is assumed. The ability to model different variance–
covariance matrices for the observations taken on plants
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under different levels of competition and for other
treatments of interest (e.g., inbreds vs. hybrids) is ad-
vantageous. In addition, the ability to fit the particular
experimental design used is an advantage to the mixed-
model approach. It has been shown previously that
stress environments usually result in a reduction of the
genetic variance (Rosielle and Hamblin 1981). In ad-
dition, pairwise correlation between traits varies de-
pending on the levels of stress, which has been observed
in several QTL studies for drought tolerance (Ribaut

et al. 1996, 1997; Sari-Gorla et al. 1999). LRTs indicated
that the estimated Rn matrices significantly differed
across densities and inbred/hybrid states. Differences
across densities were likely due to the increased number
of plants sampled in the high density.

However, mixed models also present serious statistical
concerns that should be kept in mind when employing
such techniques. One concern is the unknown behavior
of the LRT to determine the appropriate variance–
covariance structure. Therefore, we also examined the
AIC and BIC in our determination of the variance–
covariance matrix. While few of our conclusions were
affected by this choice, this will not always be the case.
Researchers should be aware of the sensitivity of their
hypothesis tests to the choice of this matrix and exert
care in its selection. Another concern is the type I error
of the F-tests for fixed effects. Type I error for these tests
can be grossly inflated, particularly when multiple traits
are considered and correlation among traits is high
(Catellier and Muller 2000). We performed a simula-
tion study to determine exactly what the type I error
inflation was expected to be for our experimental de-
sign. We found evidence for modest inflation of the type
I error, and accordingly we are cautious in the inter-
pretation of our results. Some theory has been de-
veloped that allows for adjustments to the test statistics
that can, in some situations, lead to the improvement of
the behavior of the F-test (McLean and Sanders 1988;
Zucker et al. 2000). However, these methods are very
specific and have not yet been successfully generalized.
Clearly, more work in this area is needed.

We presented an approach for detecting loci re-
sponsive to density treatments in a small set of SILs on
the basis of mixed-models theory. This method is
particularly suited for identifying loci that may be
associated with response to stress since it allows for ac-
commodation of stress-induced changes in the variance–
covariance matrix among residuals. Furthermore, it
accounts for this heterogeneity in the correlation
among traits when testing both main effects of the lo-
cus and locus-by-density interaction effects. The ability
to estimate and directly test locus-by-density interac-
tions in the mapping of loci associated with response
to interplant competition is of major importance for
marker-assisted selection initiatives aimed at improv-
ing performance. Loci with the favorable response to
density treatments in addition to loci with a favorable

mean may be important in understanding the genetic
basis of grain yield response to density. Furthermore,
although the approach proposed here was applied to a
small set of SILs, it can be extended to recombinant
inbred lines, backcrosses, and F2 mapping popula-
tions by specifying the design matrix to accommodate
the marker information (Haley and Knott 1992;
Whittaker et al. 1996; Coffman et al. 2005).
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